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Abstract 

This paper considers the choice of the most profitable sampling frequency for a feedback quality 

control system. It is assumed that the disturbance can be adequately modeled by a first-order 

Integrated Moving Average (IMA (0, 1, 1)) process. The cost model includes two terms, one for the 

cost of being off-target and one for the cost of sampling and adjustment. An analytical solution is 

obtained and the sensitivity of parameters examined. 
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1. INTRODUCTION 

 

The quest for quality is probably more widespread and intense globally today than at 

anytime in history. Organizations worldwide have realized that the key to increased 

productivity and profitability is improving quality. They have been actively involved in 

developing and implementing strategies for improving quality of their goods and services by 

employing techniques that reduce product and process variability. 

Statistical Process Control (SPC) and Automatic Process Control (APC) (which is also 

referred to as Engineering Process Control (EPC)) are two quality improvement strategies 

that focus on reduction of variability as their objective. SPC is used to continuously monitor 

a process to detect signals representing possible assignable causes that increase variability. 

Control charts are used to detect assignable causes of variation. APC, on the other hand, is 

used to reverse the effect of process disturbances by making regular adjustments to process 

variables that can be manipulated. The objective of the adjustments is to keep the output 

quality characteristic close to its target. Box and Jenkins (1976) developed optimum control 

strategies using Minimum Mean Square Error (MMSE) control by modeling the process 

dynamics and the disturbances at the output. Box and Kramer (1992) provided an excellent 

comparison of SPC and APC and discussed the differences between the two strategies. SPC 

performs a monitoring function that signals when control is needed by identifying and 

removing assignable causes of variation while APC, rather than removing the assignable 

causes, uses continuous adjustments to keep the process variable on target. MacGregor 

(1987) showed that integrating these two strategies can improve the overall quality 
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performance. This was further emphasized by MacGregor and Harris (1990) Montgomery et 

al. (1994) and Vander Wiel (1996). A related problem that is relevant to both SPC and APC 

is the selection of the best sampling interval for monitoring the process behavior. This has 

been examined under various scenarios by Bessegato et al. (2011),Duncan (1956), Dasgupta 

and Mandal (2008), Hunter and Kartha (1984) and MacGregor (1976). 

This study investigates the problem of selecting the optimum sampling frequency for a 

feedback quality control system in which the process disturbance can be represented by an 

IMA(0,1,1) model. An analytical solution for optimum sampling interval is obtained by 

minimizing the overall cost that includes both the cost of sampling and adjustment as well as 

the cost of being off the target. The method discussed here provides a cost-effective 

alternative to the trial-and-error procedure that is often used in practice. 

 

2. PROBLEM 

 

Consider a manufacturing process in which the product is manufactured in the form of 

discrete units (for a continuously produced product such as a liquid, one can imagine that 

the product stream is divided into appropriately sized parcels, and the theory below applies). 

Suppose these discrete units are sampled at regular intervals to check whether a particular 

specification, such as minimum weight, is being satisfied. By “sampling” we mean the act of 

making a measurement of a single quality characteristic on a sample taken from the process. 

Suppose there is a target value for this specification. At each time t the process is sampled 

and the deviation t from this target value is observed. An input variable Xt (for example, the 

setting of a valve) is adjusted, the amount of adjustment at the time t being a function of t . 

The purpose of the adjustment Xt is to try to maintain the process as close to its target value 

as possible. Such a system, used for process control, is often referred to as a closed loop 

feedback control system. 

In general, sampling the process more frequently would permit tighter control, that is, 

the t`s in some sense would be smaller. The most frequently one could sample a process 

would be to sample each item produced. But the higher the rate of sampling and adjustment, 

the higher the cost. Therefore, the most economic sampling frequency must be a 

compromise between the cost of being off-target and the cost of sampling and adjustment. 

The solution must depend on the cost parameters and the stochastic nature of the production 

process. 

Consider a closed loop feedback control system in which the t`s are observed at equal 

intervals of time. At time t, an unobserved disturbance Nt enters the system at the output. 

The disturbances can be counteracted by making adjustments Xt of a manipulated input 

variable. These adjustments are determined by the control equation f (t, t-1 . . .). It is 

assumed that Xt and Nt are deviations from reference values which are such that if the 

conditions Xt = 0 and Nt = 0 are maintained, the output would remain on the target value, 

that is, t = 0. A variety of situations that occur in practice can be approximated as follows: 

 

  t = {g (1-) / (1-B)} Xt-1 + Nt    (1) 

where g = steady state gain of the dynamic system,  = dynamic constant, B is the backshift 

operator such that BXt = Xt-1, and 
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        Nt = {(1-1B) / (1-B)} at. 0<1< 1,                                      (2) 

where 1 = the moving average parameter and {a1} = white noise series with mean zero and 

variance 1
2
. Equations (1) and (2) represent a feedback control system with first order 

dynamics and no delay in which the disturbance follows an IMA (0,1,1) integrated moving 

average model (Box and Jenkins, 1976). For a system described by Equations (1) and (2), 

the adjustment to be made for minimum mean square error control (MMSE) is 

 

Xt = { (1-B) / g(1-) } (1-1) t     (3) 

 

With such adjustments, the observed deviations from target {t} will be a white noise 

sequence {a1} with mean zero and variance 1
2
, at being the one-step ahead forecast error. 

The variance of adjustments is given by 

 


2
x ={ (1-1

2
) / g

2
} { (1+ 1

2
) 1

2
 / (1- 1)

2
]}    (4) 

 

Often, in practice, the process is sampled to determine whether or not a particular 

quality characteristic is on target. Suppose that only every s
th

 value of t is observed where s 

is a positive integer. Denote this sampled process by Mt. In this paper, we consider the 

selection of the optimal sampling frequency that minimizes the cost per unit time.  

 

3. COST FUNCTION 

 

If the Nt process defined by (2), which is IMA (0,1,1), is observed at intervals of s time 

units (where s, the sampling interval, is a positive integer), the resulting sampled process Mt 

is also IMA (0,1,1), that is, 

 

Mt = { (1-sB) / (1-B) } et      (5) 

 

where {et} is a white noise series with mean zero and variance s
2
 . The parameters of the 

two processes are related according to the following two equations: 

 

(1-s)
2
 / ss = (1-1)

2
 /1      (6) 

 

s
2
s =1

2
1       (7) 

 

We assume the sampled process is invertible, which implies that 1< 1. Note that 

the adjustment that ensures MMSE control for Mt process is 

 

Xt (s) = -{ (1-s) / g(1-
s)
 } (1-

s
B) t (s).      (8) 
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Under MMSE control, the observed deviations from target { t (s) } are uncorrelated 

random variables with mean zero and variance s
2
 . 

In general, sampling the process more frequently would permit tighter control, that is, 

the t`s in some sense would be smaller. The most frequently one could sample a process 

would be to sample each item produced. But the higher the rate of sampling and adjustment, 

the higher the cost. The overall costs C(s) consists of two parts, (a) that associated with 

production of items which are different from the target value and (b) that of sampling and 

adjustment. A smaller sampling interval decreases cost (a) while increasing cost (b). On the 

other hand, a larger sampling interval increases cost (a) and decreases cost (b). The control 

scheme ensures that, on the average, the process is on target, that is, the expected value of t 

is zero. Therefore, variance of t , the deviations from the target, may be used as a measure 

of cost (a). The cost per unit time, C(s), is defined as 

 

C (s) = Rs
2
 + 1/s      (9) 

 

where R = C1 / C2, C1 = cost of being off-target per unit time and C2 = unit cost of sampling 

and adjustment.  

The optimal sampling interval s = s
*
 is such that C(s

*)
 = min { c(s) } for s> 1. 

 

4. PARAMETERS OF THE SAMPLED PROCESS 

 

For the sampled process Mt defined by (5) explicit expressions for the parameters s 

and s
2
 are given below (Hunter and Kartha, 1984). The Mt process will be invertible of s is 

chosen such that 

 


+

s if 0<1<1 

s = {     

     (10) 


-
s if -1<1<0 

 

where s > 1 and s are defined by 

 


+

s = [2 - s + u(s)]/2     (11) 

 


-
s = [2 + s + u(s)]/2     (12) 

where 

u(s) = (
2
s

2
 + 4s)

1/2 
     (13) 

and 

 = (1 - 1)
2
/1      (14) 

 

Note that s
+
 is the correct root when 1 is positive, and s

-
 is the correct root when 1 

is negative, which explains the use of the superscripts + and - for s. Once s is determined, 

s
2
 can be obtained from (7). 



On Determining the Optimal Sampling Frequency for Feedback Quality Control Systems        59 

The invertibility condition for the Mt process (Box and Jenkins, 1976) is that 0 <s < 

1. For processes that are invertible, the current observation does not depend overwhelmingly 

on observations in the remote past. The condition also leads to a unique autocorrelation 

structure.  

 

5. DERIVATION OF THE OPTIMAL SAMPLING INTERVAL 

 

The parameters s and s
2
 of Mt the sampled process are related to those of Nt the 

original process as follows. 

 

s = { 2+ s-sgn (1) u(s) } / 2     (15) 

 

s
2
 = 11

2
 / s      (16) 

 

where  = (1 - 1)
2
 / 1, u (s) = (

2
s

2
+4s)

1/2
 and sign (1) is +1 if 0<1<1 and -1 if -1<1<0. 

Substituting (16) into (9) and differentiating with respect to s, we get 

 

C' (s) = sgn (1) (R11
2
/s) { / 

2
s

2
 + 4s)

1/2
 - 1/s

2
   (17) 

 

and differentiating again, we get 

 

C'' (s) = sgn (1) (2R11
2 


2
) / (

2
s

2
 + 4s)

3/2
 + 2/s

3
    (18) 

 

It can be shown that, for 0 <1 < 1, the equation C' (s) = 0 leads to the cubic equation  

 

F (s) =  ( + ) s
3
 + 4s

2
 - s - 4 = 0     (19) 

 

where  = R11
2
. Cardan's solution for the general cubic equation in s, 

 

s
3
 + ps

3
 + qs + r = 0      (20) 

 

Gives the following three roots: 

 

s1 = A + B - p/3      (21) 

 

p/3- 2/3){ 2/)(2  BABAs    (22) 

                            p/3- 2/3){2/)(3  BABAs                                         (23) 
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where A = [-b/2) + b
2
 /4) + (a

3
/27) }

1/2
] 

1/3 
B = [-b/2) -{b

2
 /4) + (a

3
/27) }

1/2
] 

1/3
, a = (3q-p

2
)/3, 

and b = (2p
3
 - 9pq + 27r) /27. Note that s1 is always real. In general, recalling that  = (1-1)

2
 

/ 1  and  

 = R11
2
, one can directly obtain the three roots of (19) by setting p=4/ (q= -1 /  

(, and 

 r = -4/  (. Which of the three roots s1, s2 and s3 is the desired solution s
*
 depends on 

the properties of C (s) and therefore we now study this function. Note that C(s) is a 

continuous function of s and that the derivatives C' (s) and C'' (s) exist for all permissible 

values of s. 

We now investigate the conditions under which C (s) is a convex function of s and the 

properties of C (s) when these conditions are not satisfied. 

Lemma 1 A necessary and sufficient condition that C (s) is a convex function of s 

for s > 1, R > 0, 1
2
 (>0), is that 

 

 { (1-1)/ 1 }
2
      if 0 <1< 1 

R
2

s<       

                   (24) 

{ (1-1)
3
 / 

2
1 (1 - 1) } if -1 <1< 0 

 

Proof A necessary and sufficient condition that C (s) is convex is that C'' (s) > 0. Using 

(18) it can be shown that a necessary and sufficient condition for C (s) to be convex is that 

 

R11
2


1/2
< { + (4/s) }

3/2
  if 0<1< 1    

 (25) 

and 

 R11
2


1/2
< {r - (4/s) }

3/2
  if -1<1< 0                                             (26) 

where 

 = { (1-1)
2
 / 1 }       (27) 

 

 = { (1+ 1)
2
 / 1 }       (28) 

 

and 1 = -1 . It can be shown that these inequalities imply (24) and vice versa.  

Note that if (24) is satisfied C(s) is convex and has one distinct real minimum. But in 

practice C(s) is not always convex so it is necessary to treat the case when (24) is not 

satisfied. 

Lemma 2 C (s) is an increasing function of s for s > 1, R > 0, 1
2
 (>0) and 0<1 < 1 

if  

 

  { (1+ 1)
3
 / 1

2
 (1- 1) }    if 0 <1< 1 

             R
2

1>           

(29) 

  { (1 - 1) / 1}
2
  if -1 <1<0    
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Proof The proof consists of showing that C' (s) > 0 under (29) for s > 1. Under conditions 

of this lemma C(s) is minimized when s = 1. 

Lemma 3 For R> 0, 1
2
 (>0), 0<1< 1 

 and { (1-1) / 1 }
2
< R1

2 
< { (1 + 1)

3
 / 1

2
 (1- 1) }    (30) 

there exists an  s  (1, ), say s, such that C (s) is convex in the interval (1, s) and is an 

increasing function of s in the interval (s, ). s is given by 4 / { (R
2
1

2
1

4
)

1/3
 -  } where 

 = (1-
2

1) / 1. 

Proof The inequality { (1-1) / 1}
2
< R1

2
< { (1 + 1)

3
 / 1

2
 (1- 1) } can be shown to be 

equivalent to 
3
< R

2
1

2
1

4
< ( + 4)

3
. Since ( + 4/s)

3
 is decreasing in s for all s > 1 and 

 R
2
1

2
1

4
< ( + 4/s)

3
 , there exists an s, s such that R

2
1

2
1

4
 = ( + 4/s)

3
>

3
. Now  

 R
2
1

2
1

4
< ( +4/s)

3
 for 1 < s < s and by (25) is convex in (1, s) while R

2
1

2
1

4
> ( +4/s)

3 

for s< s< which implies that C (s) is increasing in this interval. 

Lemma 4 For R > 0, 1
2
 (> 0), -1<1< 0 and  

{ (1 + 1)
3
 / 1

2
 (1-1) } < R1

2
< { (1-1) / 1 }

2
                (31) 

there exists an s  (1,), say s, such that C (s) is concave in the interval (1, s) and convex 

in the interval (s, ). s is given by 4 / { - (R
2
1

2
1

4
)

1/3
 } where 1 = -1 and  = (1+ 1)

2
 / 

1. 

Proof The inequality { (1+ 1)
3
 / 1

2
 (1-1) }, R1

2 
< { (1-1) / 1 }

2
 can be shown to 

be equivalent to (-4)
3
< R

2
1

2
1

4
<

3
 . Since ( - 4 / s

3
) is increasing in s for all s > 1 and 

R
2
1

2
1

4
<

3 
there exists an s , s , such that R

2
1

2
1

4
 =(-4/s)

3
<

3
. Then R

2
1

2
1

4
> ( - 4 / 

s
3
) for  

1< s< s and C(s) is concave there while R
2
1

2
1

4
< ( - 4 / s

3
) for s< s < and C(s) is 

convex at this interval. The expression for s is obtained from the equality above. Under 

conditions of this lemma, any root of C(s) =0 which is in the interval (1, s) will be a 

relative maximum while a root of C(s)=0 in the interval (s, ) will minimize C(s). If no 

minimizing root exists, s* = 1.  

Which of the three roots s1, s2, s3 is the desired solution s
*
 depends on the properties of 

C(s) discussed in the lemmas above, the consideration of which leads to the following 

theorem. 

Theorem  For an Mt process (where R> 0, 1
2
> 0, s > 1) the optimal sampling interval 

s
*
 is given by 

  s0 when condition (1) is satisfied 

s* =   s2 when condition (2) is satisfied  (32) 

   s1 otherwise  

where condition (1) implies 

R
2
1>{(1+ 1)

3
 / 

2
1(1 - 1)} for 0 <1< 1 

and           

R
2
1>{(1- 1) / 1}

2
 for -1 <1< 0                 (33) 

and condition (2) implies 

{(1+ 1)
3
 / 

2
1(1 - 1)}< R

2
1<{(1- 1) / 1}

2  
for -1 <1< 0 

and          

   C` (s2> s ) = 0             (34) 
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where s0 = 1 is the basic unit sampling interval, s = 4 / { - (R
2
1

2
1

4
)

1/3
 } and s1 is given by 

(21). 

Proof The proof of this theorem follows from the lemmas stated above. Note that under 

the conditions stated in lemma 1, when (24) is true C(s) is a convex function of s for all s > 

1, R > 0, 1
2
> 0 and for 1 such that 0 <1 < 1. This implies that there is one and only one 

real distinct minimum of C(s) for all permissible values of R, 1, 1
2
 and for all s > 1 under 

(24). Now s* is the root of the cubic equation F(s) given by (19) such that C(s
*
) is a 

minimum for all permissible values of R, 1, 1
2
 and s > 1. Since F(s) = 0 has three roots of 

which only s1 given by (21) is real for all permissible values of R, 1, 1
2
 and s > 1, it 

follows that s*= s1 is the root which gives the minimum for C(s) whenever (24) is true. 

Under the conditions of Lemma 3, C(s) is convex in (1, s) and is increasing in (s, ). 

Since C(s) is convex in (1, s), there is one and only one real distinct minimum of C(s) for 

all permissible values of R, 1, 1
2
 and for all s > 1 and s* = s1 where s1  (1, s) and is given 

by (21). Since C(s) is an increasing function in the interval (s, ), s*=s0in this interval. 

When 1 is negative, C(s) is convex in (s, ) under the conditions of Lemma 4 and any root 

of C'(s) = 0 which is in the interval (1, s) will be a relative maximum. Since C(s) is convex 

in (s, ), C(s) has only one distinct real minimum for all permissible values of R, 1, 1
2
 

and for all s > 1 when s (s, ) and is given by s2> s such that C' (s2) = 0 and is given by 

(21). If no minimizing root exists, s*=1. Again, under conditions of Lemma 2 C(s) is 

minimized when s* = 1. 

Note that if unity is found to be the optimal sampling interval, then the current 

sampling interval is better than any values greater than unity. That is, by using any sampling 

interval greater than unity one increases the cost. Suppose, for example, measurements are 

made on a trial basis every five minutes to collect the necessary data from which the optimal 

sampling frequency is to be determined. In that case the basic unit sampling interval is five 

minutes and in terms of the basic unit s = 1. If it appears from the data that C(s) might be 

reduced if s < 1, it may be desirable to collect data with a smaller basic unit sampling 

interval to determine the best value of s. These data will also allow the assessment of the 

model, which may be inadequate at the higher frequency of sampling. When the parameters 

 and 1
2
 are unknown, estimates for them may be obtained (Box and Jenkins, 1976). 

 

6. SENSITIVITY ANALYSIS 

 

In this section we study the behavior of s* as a function of 1 and R. Table 1 below 

summarizes cost as a function of s, R and  for values of s from 1 to 15 for four values of 1 

(0.9, 0.5, -0.5, and -0.9) and for three values of R (0.1, 1.0 and 3.0). It can be observed that 

the cost in an increasing function of R. 

Table 2 provides values of s* as a function of 1 and R which is provided graphically 

in Figure 1. For any s* < 1, the optimal value is s* = 1. This means that by using a sampling 

interval greater than the current one, the cost will be increased. As an example, suppose 

measurements were taken every 30 minutes on a trial basis of a manufacturing process in 

order to collect data from which s* is to be determined. In this case, the basic unit sampling 

interval is 30 minutes and if s* = 1.5, that means that the optimum interval is 45 minutes.  
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Figure no. 1 s* as a function of R and 1 

 
Table no. 1 Cost as a function of s, R and 1 

  1=-.9   1=-.5  
S R=.1  R=1 R=3 R=.1      R=1 R=3 
              

1 1.10 2.00 4.00 1.10 2.00 4.00 
2 10.3 5.77 16.00 .84 3.93 10.78 
3 1.23 9.27 27.15 .90 6.04 17.45 
4 1.51 12.83 37.98 1.05 8.22 24.16 
5 1.82 16.40 48.80 1.22 10.43 30.88 
6 2.15 19.99 59.62 1.41 12.65 37.61 
7 2.49 23.58 70.45 1.62 14.88 44.34 
8 2.83 27.18 81.28 1.82 17.11 51.08 
9 3.18 30.77 92.10 2.03 19.35 57.82 
1

0 

3.53 34.38 102.93 2.25 21.59 64.56 
1

1 

3.88 37.98 113.76 2.46 23.83 71.31 
1

2 

4.23 41.58 124.58 2.68 26.07 78.05 
1

3 

4.59 45.19 135.41 2.90 28.32 84.80 
1

4 

4.94 48.79 146.24 3.12 30.56 91.55 
1

5 

5.30 52.40 157.07 3.34 32.81 98.29 
 

 

  1=.5   1=.9  
S R=.1  R=1 R=3 R=.1      R=1 R=3 
              

1 1.10 2.00 4.00 1.00 2.00 4.00 
2 .63 1.81 4.43 .60 1.54 3.63 
3 .49 1.93 5.11 .44 1.41 3.57 
4 .44 2.17 5.85 .35 1.36 3.58 
5 .41 2.33 6.60 .31 1.34 3.67 
6 .41 2.56 7.35 .28 1.33 3.66 
7 .41. 2.80 8.11 .26 1.33 3.71 
8 .42 3.04 8.87 .25 1.34 3.76 
9 .43 3.28 9.62 .23 1.34 3.81 
1

0 

.44 3.53 10.38 .23 1.35 3.86 
1

1 

.46 3.77 

4.02 

11.14 .22 1.37 3.91 
1

2 

.48 4.02 11.89 .21 1.38 3.97 
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1

3 

.50 4.27 12.65 .21 1.39 4.02 
1

4 

.52 4.52 13.40 .20 1.40 4.07 
1

5 

.54 4.76 14.16 .20 1.47 4.12 
 

Table no. 2 s* as a function of R and 1 

1 R=.1 R=.5 R=1 R=3 R=5 

      .9 25.51 9.82 6.43 3.24 2.35 
.8 14.19 5.71 3.81 1.97 1.44 
.7 9.91 4.11 2.77 1.46 1.08 
.6 7.62 3.23 2.20 1.18  
.5 6.19 2.67 1.84 1.00  
.4 5.21 2.27 1.58   
.3 4.49 1.98 1.38   
.2 3.94 1.75 1.23   
.1 3.51 1.57 1.11   
-.1 2.87 1.28    
-.2 2.63 1.16    
-.3 2.42 1.05    
-.4 2.24     
-.5 2.09     
-.6 1.95     
-.7 1.83     
-.8 1.72     
-.9 1.62     

 

If s* is less than the basic unit, it will be necessary to collect data with a smaller basic 

unit to determine the value of s*. In table 2, values of s* > 1 are given. Figure 1 plots the 

same information for values of R equal to 0.1, 0.5, 1.0, 3.0 and 5.0.  

As can be observed from table 1, for large values of 1, the cost function is relatively 

flat. For smaller values of 1, the cost function is steeper. For the sake of comparison, let us 

consider the case for R = 1 and 1 = 0.9. The optimum value is 6 with minimum cost equal 

to 1.33 for this case. The cost is less than 10% higher than the minimum of the value of s is 

between 3 and 12. For the same comparison with the minimum cost, for 1 = 0.5, the value 

of s is between 1 and 3, a much shorter range. The optimum value in this case is 2. 

Therefore, the choice of a sampling interval only slightly different from the optimal value 

will result in considerably increased cost for small , while for large , the situation is not so 

sensitive. 

Since R is the ratio between C1, the cost of being off the target and C2, the cost of 

sampling, and adjustment, for larger R, s* is smaller. That is, in case cost of sampling is 

relatively small, and hence a larger R, the best policy is to sample more frequently. On the 

other hand, if sampling is costly, the optimum policy is to sample less frequently, that is, 

with a larger s*. 

Given the values of the parameters 1, 1
2
 and R a corresponding optimal sampling 

interval can be obtained by using techniques for estimating a dynamic stochastic model from 

input and the output data collected over periods of time (Box and Jenkins, 1976). In either 

case, information regarding the effect of these parameter values on s* could be of 

considerable help in the final choice of the sampling interval for a given situation. 
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7. SPECIAL CASES 

 

In the previous sections we considered the case where the range of the parameter 1 in 

the model for the disturbance Nt defined by (2) was restricted to 0 <1< 1. We shall now 

consider two special cases when Nt is a random walk or a white noise series. First consider 

the case when 1 = 0. The noise model is then (1-B)Nt = at, where {at} is a white noise series 

with mean zero and variance 1
2
.  

Equivalently, Nt can be said to follow a random walk. If we sample s units apart from 

this process, the sampled process Mt will be (1-B)Mt = et, where {et} is a white noise series 

with mean zero and variance s
2
 = s1

2
. The cost function becomes, therefore, c(s) = R 

s1
2
+ 1/s, and the optimal sampling interval s* in this case is given by 

 

s* = 1/1 R
1/2

                                          (35) 

 

Let us examine the practical implications of (35). Recall that R = C1/C2 where C1 is the 

cost of being off-target per unit time and C2 is the cost of sampling adjustment. From (35) if 

R is large (the cost of sampling and adjustment is relatively small), s* will be small. The 

optimal policy therefore will be to sample with a relatively high frequency. On the other 

hand, from (35) if R is small (the cost of sampling is relatively large), s* will be large. In 

this case the suggested optimal policy is to sample with a relatively low frequency. These 

results agree with common sense. 

Another case of special interest is when the disturbance Nt is white noise at, where at is 

defined as above. The sampled process Mt will also be white noise in this case. Then the 

cost function (9) is 

 

C(s) = =Rs
2
 + (1/s) = R1

2
 + (1/s)    (36) 

 

Since s
2
 = 1

2
 . C(s) is minimized with s , which means the best policy is never to 

sample at all! At first glance this result may seem unreasonable, because there is a danger 

that real processes will go out of control if not checked periodically (this is, after all, the 

rationale for quality control programs). But the reason for this result is clear: the assumption 

of a stationary time series comprised of uncorrelated errors is unrealistic for most 

manufacturing processes. If the relevant time series is stationary, it will always tend to 

return to its fixed mean value, and there is little danger that it will “wander off” causing an 

out-of-control condition. (In fact, generally for all stationary processes the long-run 

expression for s
2
 is a constant and s* = .) For this artificial stationary case, then, the 

mathematics does give the right answer: sampling is a waste of money. Curiously enough, a 

majority of the literature in quality control assumes, unrealistically, that industrial time 

series are stationary. This perhaps explains why algorithms for determining optimal 

sampling frequencies for practical quality control problems are few in the literature. 
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