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Abstract 

Within non-life insurance pricing, an accurate evaluation of claim frequency, also known in theory as 

count data, represents an essential part in determining an insurance premium according to the 

policyholder’s degree of risk. Count regression analysis allows the identification of the risk factors 

and the prediction of the expected frequency of claims given the characteristics of policyholders. The 

aim of this paper is to verify several hypothesis related to the methodology of count data models and 

also to the risk factors used to explain the frequency of claims. In addition to the standard Poisson 

regression, Negative Binomial models are applied to a French auto insurance portfolio. The best 

model was chosen by means of the log-likelihood ratio and the information criteria. Based on this 

model, the profile of the policyholders with the highest degree of risk is determined. 
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1. INTRODUCTION 

 

We are living in a society that needs to manage risks of various types and with a 

significant economic impact. In the context of a risk based civilization, the need of 

protection has become more pronounced, having as a consequence the request of financial 

security against possible losses. Therefore, the emergence and development of the insurance 

business are related to the urgent need to protect the individuals and their assets against a 

possible loss caused by a particular event. The entire process of insurance consists in 

offering an equitable method of transferring the risk of a contingent or uncertain loss in 

exchange for payment. 
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Non-life insurance business, especially auto insurance branch, holds an increased 

interest because it is required to manage a large number of situations (both the number of 

insured vehicles and of accidents) with a wide variety of risks. 

A fundamental goal of insurance companies is to calculate an appropriate insurance 

price or premium corresponding to an insured in order to cover a certain risk. A well-known 

method to calculate the premium is to multiply the conditional expectation of the claim 

frequency with the expected cost of claims. Therefore, modelling frequency of claims, also 

known in theory as count data, represents an essential step of non-life insurance pricing. As 

sustained in Boucher and Guillen (2009), count regression analysis permits the identification 

of the risk factors and the prediction of the expected frequency of claims given the risk 

characteristics.  

In the past years there has been considerable interest in count data models, particularly 

in the actuarial literature. As mentioned in Cameron and Trivedi (1998), an important 

milestone in the development of models for count data is reached by the emergence of 

Generalized Linear Models (GLMs). The Poisson regression is a special case of GLMs that 

was first developed by Nelder and Wedderburn (1972) and detailed later in the papers of 

Gourieroux et al. (1984a, 1984b) and in the work on longitudinal or panel count data models 

of Hausman et al. (1984). Within non-life insurance context, McCullagh and Nelder (1989) 

demonstrate that the usage of the GLMs techniques, in order to estimate the frequency of 

claims, has an a priori Poisson structure. Antonio et al. (2012) present the Poisson 

distribution as the modelling archetype of claim frequency.  

Although it offers a favourable statistical support, Gourieroux and Jasiak (2001) 

emphasizes that the Poisson distribution presents significant constraints that limit its use. 

The Poisson distribution implies equality of variance and mean, a property called 

equidispersion that, as sustained in Cameron and Trivedi (1999), is a particular form of 

unobserved heterogeneity. One of the well-known consequences of unobserved 

heterogeneity in count data analysis is overdispersion which means that the variance 

exceeds the mean. Other explanation is provided by Jong and Heller (2013) who termed the 

overdispersion as extra-Poisson variation because this type of data displays far greater 

variance than that predicted by the Poisson model.  

Vasechko et al. (2009) state that the problem of overdispersion, inherent to the Poisson 

model, implies the underestimation of standard errors of the estimated parameters, which 

leads to the rejection of the null hypothesis, according to which the regression coefficients 

are not statistically relevant. Consequently, the restrictive nature of Poisson model has 

sustained the development of numerous techniques proposed for both testing and handling 

overdispersed data. An exhaustive analysis of these tests is provided in Hausman et al. 

(1984), Cameron and Trivedi (1990), 1998), Gurmu (1991), Jorgensen (1997) or in more 

recent studies such as Charpentier and Denuit (2005), Jong and Heller (2013), Hilbe (2014). 

The alternative distributions used most frequently in order to correct the overdispersion 

are known as compound or mixed distributions. According to the literature, a particular 

example of this class is the negative binomial distribution which consists of simple and 

efficient techniques that oversee the limits of the Poisson distribution and offer results 

qualitatively similar. In the statistical literature there are presented many ways to construct 

the negative binomial distribution, however the most used are the NB1 and NB2 forms, 

introduced by Cameron and Trivedi (1998). Among the recent studies, Denuit et al. (2007) 

give a comprehensive image concerning the mixed Poisson models and they highlight that 

negative binomial distribution is a satisfactory alternative to Poisson distribution in order to 
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estimate the claim frequency for an auto insurance portfolio. Working with cross-sectional 

insurance data, Boucher et al. (2007) sustain that the comparison of the log-likelihoods for 

the two distributions reveals that the extra parameter of the negative binomial distribution 

improves the fit of data in comparison with the Poisson distribution. For longitudinal or 

panel data, an excellent account of claim frequency distributions can be consulted in 

Boucher et al. (2008), Boucher and Guillen (2009) and Antonio and Valdez (2010), in 

which the authors analyse and emphasize the practical use of negative binomial models for 

auto insurance data.  

In the literature of non-life insurance pricing a current research topic is how to identify 

the variable and the types of variables that allow estimating the frequency of a certain 

insured risk. A standard classification would include: age and gender-marital status of 

insured, usage purpose of the insured vehicle, geography (location of garage) and other 

factors such as whether the vehicle is a sport car or not (Antonio and Valdez, 2010). A more 

systematic classification is provided by Kouki (2007) who identifies three categories of risk 

factors: the driver (age, sex, age of driving license, bonus-malus coefficient), the vehicle 

(power, age) and the insurance contract. In this context, the empirical studies are valuable 

because they permit the evaluation of a theoretical hypothesis while projecting these factors 

on an insurance portfolio (Charpentier and Denuit, 2005; Yip and Yau, 2005; Denuit et al., 

2007; Allain and Brenac, 2012; Boucher et al., 2013). The results of these studies are 

considered by the insurance companies while assessing their calculation tools and proposing 

new solutions according to changes in the behaviour and characteristics of clients. 

The present study lines up with the current focus of the auto insurance literature. The aim 

of this study can be highlighted at two levels. The first is theoretical and methodological and 

aims to present synthetically the econometric modelling methodology of auto claim frequency. 

The second objective is related to the empirical part of this research. Working with a French 

auto insurance portfolio, we estimate an econometric model for claim frequency. On this level, 

the main contribution of the study is represented by a specific set of explanatory variables that 

take into account a number of updates concerning the data registered by insurance companies. 

For example, in this study, we introduce as risk factors the variables occupation of insured, 

GPS and value of vehicle. Also, in comparison with similar studies, we use a different 

classification of the insured based on age intervals on the assumption that more homogenous 

groups will be obtained and the calculation of premiums will better correspond to the reality of 

studied phenomenon. Although the results cover a portfolio of a French insurance company, 

the methodology of data count models can be applied to other insurance portfolios of 

companies from other European countries such as Romania.  

The paper is structured as follows. Section 2 deals with a brief presentation of the used 

data and aspects related to methodology of count data models. Section 3 includes our 

empirical study. Concluding remarks are summarized in Section 4. 

 

2. DATA AND METHODOLOGY 

 

In this paper, we worked with an auto insurance portfolio of a company operating in 

France. The analysed phenomenon concerns the third party liability for the damages of the 

vehicles, for which the insurance is covering the losses within the limits of the insured amount. 
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2.1. Sample 

 

The sample contains 150021 policies observed during the period 2007-2009. We use 9 

exogenous variables for every policy, as well as the total frequency of claims at fault that were 

reported within the yearly period. Therefore, except the explained variable, the frequency of 

claims, the other ones are considered risk factors that are known a priori by the insurer. In 

comparison with similar empirical studies, we group the risk factors into three categories that 

reflect the policyholder characteristics: age, occupation; the vehicle features: value, type, 

category, use, GPS; the insurance policy characteristics: insurance policy duration, bonus-

malus coefficient. Table 1 summarizes the information available about each policyholder. 

 
Table no. 1 – List of variables 

Variable Description Values 

Count 

Age 

Occup 

Type 

Categ 

Use 

Value 

GPS 

Bonus 

Duration 

Frequency of claims  

Age of policyholder 

Occupation of policyholder 

Type of vehicle 

Category of vehicle 

Purpose of vehicle usage  

Value of vehicle 

GPS device 

Bonus-malus coefficient 

Duration of insurance policy 

From 0 to 5 claims declared 

From 18 to 75 years 

Employed, Housewife, Retired, Self-employed, Unemployed 

A,  B,  C,  D,  E,  F 

Large, Medium, Small 

Private, Professional, Other 

From 1000 to 50000 Euros 

Yes, No 

From -50 to 150  

From 0 to 15 years 

 

Among these variables, bonus-malus coefficient presents a particular interest for auto 

insurance pricing, having a specific meaning according to the insurance system of each 

country. Within the French bonus-malus system, this coefficient indicates an increase or a 

decrease of the insurance premium depending on the number of claims declared by a 

policyholder. Therefore, if the policyholder does not cause any responsible accident, he 

receives a bonus, meaning that the insurance premium will be reduced. Contrary, if the 

policyholder is responsible for the accident, he is penalized by applying a malus, which will 

have the consequence of a premium increase. These increases and decreases are based on a 

standard tariff defined by the insurer, depending on which the premium is multiplied by a 

coefficient. The basic coefficient is 1 and it corresponds to the reference premium of the 

insurance company. If the bonus-malus coefficient is lower than this value, a bonus is applied, 

and if it is higher, a malus is considered. More specifically, the French bonus-malus system 

involves a malus of 25% for a claim declared and a bonus of 5% for the non-declaration of any 

claims in the reference period, usually a year. In this way, the system aims the encouragement 

of prudent insured drivers and the discouragement of those who, for various reasons, register 

severe losses. In the studied portfolio, the calculations corresponding to the bonus-malus 

coefficient are already generated, registering negative and positive values, which indicate a 

decrease or an increase of the insurance premium, respectively. 

To assess how best to enter policyholder’s age variable into the count model, we 

examined the difference between the fitted frequency of claims, considering age as a single 

risk factor, once being introduced as continuous variable and once as categorical variable. 

Figure 1 illustrates simultaneously the distribution of the expected frequency of claims 

explained by the policyhoder’s age both as continuous and categorical variable (with 58 

categories of age). 
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Age of policyholder as continuous variable Age of policyholder as categorical variable 

  
Source: Data processed within SAS 9.3 

Figure no. 1 – The fitted frequency of claim depending on the age of policyholder 

 

In the first case, a decrease of the claim frequency can be observed along with an 

increase in the age of policyholders. In the case with the age categorical, is also noted the 

concave shape of the fitted frequency of claims, obtaining high values for the category of 

young drivers, an obvious decrease over the years, but a slightly increase in elderly drivers 

category. Taking into account that among certain age groups the estimated frequencies of 

claims do not differ significantly, this variable could be grouped into fewer categories 

considering the breakpoints that can be easily observed on the right side of the graph. 

Therefore, based on this graphic representation, the policyholder’s age could be grouped on 

year intervals as follows: 

AgeGroup = 

{
 
 

 
 
 eginner     -   years ;        

 oung     -   years ;              

  perienced     -   years ;  

 enior     -   years ;             

 lderly dri er     -   years  

 

Further, the age of the policyholder will be considered in analysis as a risk factor (with 

the five categories established) in order to obtain homogeneous groups of policyholders, and 

thereby an accurate assessment of their risk level.  

 

2.2. Econometric models 

 

Within non-life insurance, when actuaries are interested in estimating the frequency of 

claims, the Poisson model is often considered. Although the literature sustains that it offers a 

favourable statistical support for count data, the Poisson model implies the equidispersion 

assumption that is a drawback in practical use when data is overdispersed. The literature 

presents several reasons why data can be overdispersed and also many models to address the 

variety of overdispersion found in data. In general, if the cause of overdispersion in Poisson 

model is not diagnosed, the negative binomial models are commonly recommended. There 

are a wide number of negative binomial models used, but for insurance data the more 

intuitive ones are considered the NB1 and NB2 forms of the negative binomial distribution. 

Predicted value Predicted value 
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The following part of this paper deals with aspects related to insurance count data and 

applied methodology, presenting at length the properties, the empirical evidence and the 

comparison of the three applied count data models.  

 

Poisson model 

An excellent definition of the law of rare events is given in Cameron and Trivedi 

(1998). The authors state that the total number of events will follow, approximately, the 

Poisson distribution if an event may occur in any of a large of trials but the probability of 

occurrence in any given trial is small. In the context of actuarial literature, comprehensive 

references on Poisson distribution, used as the main tool in estimating the claim frequency, 

are Dionne and Vanasse (1989), 1992), Denuit and Lang (2004), Gourieroux and Jasiak 

(2004), Yip and Yau (2005) and many others.  

If the discrete random variable    (claim frequency or observed number of claims), 

conditioned by the vector of explanatory variables     the insured’s characteristics , is 

assumed to be Poisson distributed, the probability density function of    is: 
 

 (  |  )  
      

  

   
 (1) 

 

Therefore, the relation (1) represents the probability that the random variable    takes 

the value    (    ), considering the characteristics of policyholders. 

Although the Poisson distribution is considered to be the benchmark model in non-life 

insurance data, McCullagh and Nelder (1989) sustain that it implies a particular form of 

heteroskedasticity, leading to the equidispersion hypothesis. This assumption is emphasized 

by Gourieroux and Jasiak (2001) as a severe drawback that limits the model use because it 

implies that the conditioned mean and variance of claim frequency are equal. Therefore, the 

Poisson distribution parameter represents at the same time the mean and the variance of 

distribution: 
 

 (  |  )   (  |  )     (2) 
 

Within GLMs framework, the mean of the dependent variable is related to the linear 

predictor through the so called link function. It is well known fact from the literature that a 

logarithmic function is the natural link function for the Poisson distribution: 
 

  (  )     ∑     

 

   

       
   (3) 

 

Estimations of the parameters are done by maximum likelihood. In order to find the 

maximum likelihood of (1), the likelihood function is defined as follows:  
 

 ( )  ∏
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(   

  )  
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Using a logarithm in both sides of the previous equation, the log-likelihood function is 

obtained: 
 

  ( )  ∑                 

 

   

 ∑     
      

         

 

   

 (5) 

 

The maximum likelihood estimators  ̂  are the solutions of the equations obtained by 

differentiating the log-likelihood in terms of regression coefficients and solving them to 

zero. The equations forming the system are not generating explicit solutions and therefore 

they need to be solved numerically by using an iterative algorithm. Charpentier and Denuit 

(2005) consider that the most common iterative methods are either Newton-Raphson or 

Fisher information. 

Although Poisson distribution is often used to estimate the frequency of claims, the 

empirical evidences from literature show that it is usually too restrictive for this type of data. 

The fundamental problem of the Poisson distribution is that for count data the variance 

usually exceeds the mean, a feature known as overdispersion. 

Overdispersion can result from many reasons. Hilbe (2007) provides an excellent 

discussion of this issue, differentiating between apparent and real overdispersion. Apparent 

overdispersion can occur as a result of outliers, the exclusion of relevant risk factors or 

interaction terms. In this respect, Denuit et al. (2007) highlight that overdispersion arises 

because differences in driving behaviour among individuals cannot be observed by the 

insurer, such as swiftness of reflexes, aggressiveness behind the wheel, consumption of 

drugs, etc. When the resolution of these issues does not have a conclusive response, the 

overdispersion is assumed to be real and it may be due to unobserved heterogeneity related 

to the equidispersion hypothesis. 

The literature presents numerous techniques developed in order to test the assumption 

of overdispersion. In this regard, Cameron and Trivedi (1990) propose a test for 

overdispersion by estimating the Poisson model, constructing fitted values  ̂     (  
  ̂), 

and performing the auxiliary OLS regression without intercept: 
 

(    ̂  )
    

 ̂ 

  
 ( ̂ )

 ̂ 

    (6) 

 

where    is the error term and  ( ̂ ) is a known function, most commonly  ( ̂ )   ̂ 
 
 or 

 ( ̂ )   ̂ 
 
  The first function corresponds to the NB2 form of negative binomial 

distribution, and the second is related to the NB1 form of negative binomial distribution, 

both forms being discussed at length in the following part of methodology. The null 

hypothesis of no overdispersion (      ) can be tested against the alternative hypothesis 

of overdispersion (      ) using the   statistic for  .  

Another practical and reliable test for overdispersion is introduced by Greene (2002) 

and is based on the Lagrange Multiplier test (  ). This statistics follow the    distribution 

with one degree of freedom and it is given by: 
 

   
(∑   

  
       ̅)

 

 ∑   
  

   

 (7) 
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If after comparing the statistics calculated value with the theoretical one the test 

appears to be significant, then the hypothesis of no overdispersion is rejected. Therefore, the 

approach of the various alternatives of Poisson model is preferred. 

 

Negative Binomial models 

The alternative to the Poisson distribution used most frequently in order to handle 

count data when the variance is appreciably greater than the mean is the negative binomial 

distribution. 

The negative binomial distribution is employed as a functional form that relaxes the 

equidispersion restriction of the Poisson model. The literature presents many ways to construct 

the negative binomial distribution, but Boucher et al. (2008) argue that the more intuitive one 

is the introduction of a random heterogeneity term   of mean 1 and variance   in the mean 

parameter of the Poisson distribution. This general approach is discussed at length by 

Gourieroux et al. (1984a, 1984b), Cameron and Trivedi (1986, 1990, 1998), Winkelmann 

(2004) and Greene (2008). Regarding the usage on the insurance data, a classic example arises 

from the theory of accident proneness which was developed by Greenwood and Yule (1920). 

This theory sustains that the number of accidents is Poisson distributed, but there is gamma-

distributed unobserved individual heterogeneity reflecting the fact that the true mean is not 

perfectly observed. Within the actuarial literature, the problem of mixed models is also 

illustrated and developed in the studies of McCullagh and Nelder (1989), Lawless (1987), 

Dionne and Vanasse (1989), Denuit and Lang (2004), Boucher et al. (2007), Hilbe (2014). 

The traditional negative binomial is derived from a Poisson-gamma mixture 

distribution. Therefore, if the variable   is considered to be gamma distributed, with the 

following density distribution: 
 

 ( )  
(  ⁄ )  ⁄

 (  ⁄ )
     ⁄    (   ⁄ ) (8) 

it is well known that the negative binomial is the resultant overall distribution of claim 

frequency. 

 

McCullagh and Nelder (1989) sustain that a random variable    is called a negative 

binomial distributed count with parameters   and   (  ) if the probability mass function is 

given by: 
 

 (       )  
 (      )

 (    ) (   )
(

   

      

)

   

(
  

      

)
  

 (9) 

 

In (9) the term   plays the role of a dispersion factor and it is a constant. When   goes 

to 0, it is obvious that the NB distribution reduces to the standard Poisson distribution with 

parameter   . 

Cameron and Trivedi (1986) consider a more general class of negative binomial 

distribution (NBp) having the same mean   , but a variance of the form       
 

. Cameron 

and Trivedi (1998) there are presented the two most commonly known and utilized variants 

of the negative binomial distribution. When   is set to 1, it leads to the NB1 distribution and 

a model with    , is called the NB2 distribution, also referred to as a quadratic negative 

binomial distribution. 
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The probability mass function of the NB1 model is: 
 

 (       )  
 (        )

 (    ) (     )
(   )    ⁄ (     )   ) (10) 

 

The first two moments of the NB1 are the following: 
 

           (11) 
 

                 (12) 
 

For the NB1 model, the log-likelihood function (  ) is presented below: 
 

  (   )  ∑{(∑(       )

   

   

)        (        )   (   )       }

 

   

 (13) 

 

Estimation based on the first two moments of the NB1 density, as suggested in 

Cameron and Trivedi (1998), yields the Poisson GLMs estimator, which is also called the 

NB1 GLMs estimator. 

For the NB2, the probability mass function coincides with the general negative 

binomial density function as in (9). The two first moments of the NB2 distribution are:  
 

            
   (14) 

 

        (     ) (15) 
 

The log-likelihood function corresponding to the NB2 model is given as follows: 
 

  (   )  ∑ {    (  )  ∑    (        )

  

   

 (      )    (     )       (  )}

 

   

 (16) 

 

Cameron and Trivedi (1998) argue that the differences of estimating   have received 

little attention in the literature, mostly because the interest lies in estimation of   , with   as 

a nuisance parameter. The same authors highlight that even then they are important, as the 

standard error estimates of  ̂  depend considerably on  ̂. 

Boucher and Guillen (2009) state that the process of parameters’ estimation is 

approximately the same for all three models. However it is highlighted that this situation is 

expected when a satisfactory number of conditions for consistency are satisfied. For the NB 

models, Vasechko et al. (2009) and Allain and Brenac (2012) state that the estimated 

parameters  ̂  and estimated values  ̂  differ slightly while compared with the results 

achieved after applying Poisson model, but the standard errors values of the estimators  ̂  

increase significantly after applying the model’s alternatives  Boucher and Guillen (2009), 

analysing the auto claim frequency through the NB models, observe that although the 

regression coefficients do not change significantly, they allow a better assessment of the 

standard errors of the estimates that may be underestimated by Poisson model. A similar 
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point of view belongs to Hilbe (2014) who sustains that the NB distribution presents similar 

properties as Poisson distribution, knowing that the mean is understood in the same manner 

as the Poisson mean, but the variance has a much wider scope than is allowed by the 

Poisson distribution.  

 

Criteria for assessing goodness of fit 

The literature presents many statistics that can be used to select and to assess the 

performance of count data models. 

As discussed in Denuit and Lang (2004), the standard measure of goodness of fit that 

can be used to assess the adequacy of various models is the likelihood ratio (  ) that 

follows a     
  distribution for a level of significance   of 0.05 and with   degrees of 

freedom, where   represents the number of explicative variables included in the regression 

model. This statistics test is obtained from the difference between the deviance of the 

regression model without covariates (  ) and the deviance of the model including the 

independent variables (  ): 

 

         (17) 

 

Charpentier and Denuit (2005) define the deviance as twice the difference between the 

maximum log-likelihood achievable (     ) and the log-likelihood of the fitted model: 
 

   (  (  |  )    (  |  ) (18) 
 

A value of the likelihood ratio higher than the statistics theoretical value (       
 ) 

suggests that the regression model explains well the analysed data. 

In order to compare the models, there are used some tests based on the log-likelihood 

function. In this regard, a standard method of comparison between the Poisson and NB 

models is to use the likelihood ratio, given by the expression:      (        ), 

where     and      are the values of the log-likelihood under the Poisson and negative 

binomial models, respectively. This statistics follows the    distribution with one degree of 

freedom. A calculated value of the test higher than the theoretical value (        
 ) 

underlines that the NB models are chosen to the detriment of Poisson regression.  

A convenient method used to discriminate between the two NB models is the 

comparison of the log-likelihood function values. Another standard method to distinguish 

the discussed models refers to information criteria, which is also based on the fitted log-

likelihood function. Boucher et al. (2007) sustain that the criteria used to compare the 

models must penalize the one with a large number of parameters, considering the fact that 

the likelihood increases with the addition of parameters. The standard criteria refers to 

Akaike Information Criteria (           ) and the Bayesian Information Criteria 

(            ( )), where   represents the number of parameters introduced in the 

regression model,   indicates the sample volum, and    is the model log-likelihood 

function. The literature proposes many others information criteria that employ a penalty 

term associated with the number of parameters ( ) and the sample size ( ), but AIC and BIC 

criteria are the most often used in practice. An overview of penalized criteria is presented at 

duration by Kuha (2004). 

According to the literature, mixed results were obtained concerning the models 

employed to estimate the claim frequency. In the application of Cameron and Trivedi 
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(1998), the NB2 model is preferred to NB1 as it has higher log-likelihood, with the same 

number of parameters. In contrary, the results of a more recent study of Boucher et al. 

(2007) confirm that the NB1 was one of the best models to fit the auto insurance data with 

which they worked. Analysing different type of insurance data, including auto portfolios, 

Hilbe (2014) argues that NB1 and NB2 are valuable models both to diagnose and to adjust 

overdispersion in data. Hence, there is no empirical evidence in the literature to support a 

certain count model, given the fact that the overdispersion appears for several reasons as 

discussed previous in this section. 

 

3. EMPIRICAL RESULTS  

 

3.1. Descriptive statistics 

 

Analysing the insurance portfolio structure, it can be noticed that the maximum 

frequency of declared accidents or claims by a policyholderis 5. More specifically, 

throughout the analysed period, 131838 (87.88%) of policyholders did not declare any 

accident, 15395 (10.26%) of policyholders declared one claim, 2202 (1.47%) of them 

informed the insurance company of the occurrence of two accidents, 442 (0.29%) of 

policyholders had three claims declared, 100 (0.07%) policyholders with four claims and 

only 44 (0.03%) of them declared to the company five claims. The distribution of the claim 

frequency suggests that the portfolio is heterogeneous, an aspect that can be easily deduced 

from the results shown in Table 2. 

 
Table no. 2 – Variables Analysis 

Variable Mean Median Std Dev Min Max 

Count 0.1449 0 0.4299 0 5 

Bonus -6.8603 -30 48.7486 -50 150 

Duration 5.4975 4 4.6031 0 15 

Source: Data processed within SAS 9.3 

 

Thus, with a mean of 0.1449 and a variance of 0.1848, the variance of claim frequency 

exceeds its mean. In addition, the distribution of the independent variable, bonus-malus 

coefficient, shows that more than 50% of policyholders benefit from a bonus because they 

did not have any accidents declared. On one hand, it indicates a lack of homogeneity in the 

data, but on the other hand, it shows that the policyholders present a low risk for the 

insurance company. These results admit the assumption of heterogeneity and justify the a 

priori differentiation of policyholders.  

 

3.2. Econometric models 

 

Within SAS, the GENMOD procedure is used to fit the Poisson and NB2 regression 

models in the framework of GLMs. The Type 3 analysis, generated by using this procedure, 

permits a test of the relevance of one variable taking all the others into account. For the fit of 

NB1 model, the used procedure in SAS is COUNTREG. 
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Poisson model  

The results obtained from the Poisson regression for the insurance portfolio presented 

in Section 2 are shown in Table 3 (LR statistics for analysed variables) and Table 5 

 regression coefficients’ estimations   In Table 3, in column Chi-square is calculated, for 

each variable, two times the difference between the log-likelihood of the model which 

includes all the independent variables and the log-likelihood of the model obtained by 

deleting one of a specified variable. This test follows the asymptotic     
  distribution for a 

level of significance   of 0.05 and with   degrees of freedom that represent the number of 

parameters associated to the analyzed variable.  
 

Table no. 3 – LR Statistics for Type 3 Analysis 

Source 
Poisson Regression(*) Poisson Regression(**) 

Chi-Square Pr > ChiSq Chi-Square Pr > ChiSq 

AgeGroup 3822.01 <.0001 3977.74 <.0001 

Occup 1126.40 <.0001 1129.56 <.0001 

Type 375.13 <.0001 375.27 <.0001 

Categ 1.25 0.5358 - - 

Use 1690.01 <.0001 1794.57 <.0001 

GPS 608.82 <.0001 608.92 <.0001 

Value 3.79 0.0516 - - 

Bonus 7450.25 <.0001 7454.48 <.0001 

Duration 325.67 <.0001 325.92 <.0001 
(*)  Poisson regression including all the explanatory variables 
(**) Poisson regression including only the significant explanatory variables 

Source: Data processed within SAS 9.3 
 

It can be observed that the variable denoting the category of vehicle is not statistically 

significant as it yields a p-value of 0.5358 greater than the level of significance   of 0.05. In 

consequence, this variable is excluded from the model and the analysis will continue in the 

same manner until it is obtained the optimal combination of factors (p-values < 0.05) which 

can explain the variation of claim frequency. After excluding from the model the non-

significant factors (category and value of vehicle), it is noticed that all the other predictors 

appear to significantly contribute to the process of understanding and predicting the frequency 

of claims made on vehicle insurance policies. Nevertheless, if the equidispersion assumption 

of Poisson distribution is not fulfilled, we are dealing with overdispersed data, and thereby the 

p-values tell us nothing about the relationship of the predictor and response. Therefore, it is 

imperative to test the equidispersion assumption, meaning the equality between the 

conditioned mean and variance of claim frequency, when constructing and interpreting a 

Poisson model. In this context, the method of Cameron and Trivedi and the test of Greene are 

used. Table 4 shows the results obtained after estimating and testing the parameter   for both 

forms of the known function  ( ̂ ) developed by Cameron and Trivedi. 
 

Table no. 4 – Parameter Estimates 

Form of function 

 ( ̂ ) 

Parameter 

( ) 
DF 

Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

 ( ̂ )   ̂     1 0.01412 0.00553 2.55 <.0107 

 ( ̂ )   ̂ 
 
    1 0.22806 0.04904 4.65 <.0001 

Source: Data processed within SAS 9.3 
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At a level of significance of 0.05, the values of   statistic obtained for both    and    

parameters leads to the rejection of the null hypothesis of equidispersion, indicating that 

there is overdispersion in the data and that the use of both NB1 and NB2 forms of negative 

binomial distribution is justified. With a p-value under 0.05, the Lagrange Multiplier test 

(LM = 1896.19) appears to be significant, and thereby the hypothesis of no overdispersion is 

again rejected. Both test statistics indicate very strong evidence against the fit of the Poisson 

model to the data and thus to correct the overdispersion, the alternative mixed models 

presented in Section 2 are used. 

 

Negative binomial models 

Both NB1 and NB2 regressions are based on the same explanatory variables of the 

claim frequency, leading to similar results as the ones from the Poisson regression. For all 

parameters, the p-value is under 0.05. Analyzing the results from Table 5, it can be observed 

that the parameters and the estimated values are very close to those obtained in the previous 

model. The standard errors of parameter estimates are slightly higher than those obtained for 

the Poisson model, but this does not impact the statistical significance of the regression 

coefficients. The two adjusted models do not provide further details in comparison with the 

Poisson regression in terms of risk factors that explain the variation of claim frequency, but 

managing these enhanced models could make a difference in terms of adjusting the Poisson 

overdispersion in the data. 

 
Table no. 5 – Analysis of Parameter Estimates 

Parameter 

Poisson Regression NB1 Regression NB2 Regression 

Estimate 
Standard 

Error 
Estimate 

Standard 

Error 
Estimate 

Standard 

Error 

Intercept -0.1644 0.0339 -0.1775 0.0351 -0.1714 0.0362 

AgeGroup (Elderly) -0.8917 0.0504 -0.8796 0.0517 -0.8849 0.0521 

AgeGroup(Experienced) -1.1281 0.0184 -1.1167 0.0191 -1.1230 0.0195 

AgeGroup (Senior) -1.1332 0.0541 -1.1139 0.0551 -1.1255 0.0555 

AgeGroup (Young) -0.4328 0.0203 -0.4285 0.0211 -0.4296 0.0217 

Occup (Employed) -0.2417 0.0183 -0.2404 0.0189 -0.2403 0.0194 

Occup (Retired) -1.1899 0.0445 -1.1870 0.0455 -1.1907 0.0454 

Occup (Self-employed) -0.3772 0.0216 -0.3761 0.0223 -0.3762 0.0227 

Occup (Unemployed) -0.0749 0.0207 -0.0738 0.0214 -0.0763 0.0220 

Type (A) -0.4009 0.0292 -0.3992 0.0301 -0.4025 0.0310 

Type (B) -0.3072 0.0296 -0.3040 0.0306 -0.3103 0.0315 

Type (C) -0.2443 0.0314 -0.2405 0.0325 -0.2449 0.0334 

Type (D) -0.1308 0.0295 -0.1318 0.0305 -0.1317 0.0314 

Type (E) -0.0693 0.0317 -0.0734 0.0328 -0.0732 0.0338 

Use (Other) -0.9163 0.0280 -0.9048 0.0288 -0.9156 0.0290 

Use (Private) -0.4624 0.0141 -0.4582 0.0145 -0.4619 0.0149 

GPS (Yes) -0.3568 0.0148 -0.3531 0.0152 -0.3480 0.0155 

Bonus 0.0106 0.0001 0.0105 0.0001 0.0106 0.0001 

Duration -0.0272 0.0015 -0.0267 0.0016 -0.0271 0.0016 

Scale 1.0000 0.0000 0.2824 0.0148 0.3952 0.0239 

Source: Data processed within SAS 9.3 
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Reviewing the coefficient signs from Table 5, a decrease of the claim frequency can be 

observed along with an increase in the duration of the insurance contracts. When the bonus-

malus coefficient increases, the frequency of claims increases as well. The interpretation of 

Poisson and negative binomial models is the same. Based on the regressions coefficients, the 

profile of policyholders with the higher risk for the company can be established. This profile 

corresponds to policyholders from the beginner’s age group, housewife, having insured a 

vehicle of type F, using it in professional purposes, not having a GPS device, with a malus 

of 150 applied to their premiums and being the client of the insurance company for one year.  

The estimated frequency of claims represents one of the components of the insurance 

premium for those new clients of the insurance company who present the same 

characteristics that correspond to one of the policyholders’ groups  In order to obtain the 

estimated value of claim frequency for these groups, we have to take into consideration that 

the link function for Poisson or negative binomial distribution is the logarithm function as 

presented in the methodology section of this paper. Considering the regression coefficients 

for NB2 model, the estimated value of claim frequency for the most risky policyholders’ 

group is obtained by the following calculation:  
 

                                                    
 

which represents the expected value of claim frequency for the clients who present the same 

characteristics as those with the riskiest profile for the insurance company. 

 

In this paper, the used factors that differ from other similar studies, has a significant 

impact on the frequency of claims, with the exception of the vehicle’s value  Taking into 

account the occupation of the insured, it can be noticed that there are significant differences 

between all 5 categories of occupation and the policyholders corresponding to the housewife 

group present the highest risk for the insurer. As consequence, the insurance company could 

exclude from the insurance portfolio the new clients that fall into this category. Another 

important factor is represented by the age of insured grouped into 5 categories as presented 

in Section 2.1. The results obtained show that the drivers from the beginner group present 

the highest level of risk for the company, as has been shown in other studies. Nevertheless, 

working with more years’ intervals, in comparison with other empirical results, allows a 

more accurate differentiation of policyholders and more homogeneous groups of clients, so 

that the introduction of this variable in pricing analysis will not be considered a 

discouraging factor while choosing insurance services. In addition, the introduction of GPS 

as risk factor is significant for the determination and implementation of some protection 

measures that could be taken by the policyholders in order to prevent the accidents or could 

be included in the pricing policy of the insurance company. Concerning the value of vehicle, 

although it does not have a significant impact on the frequency of claims, the insurance 

company could take it into consideration while assessing the second component of insurance 

premium, the cost of claims.   

Based on the 95% confidence intervals for the dispersion parameters of NB1 

regression (  (              )) and NB2 regression (  (              ), it can be 

sustained that dispersion is significantly different from 0 and the application of the negative-

binomial models is justified. Moreover, the NB2 model indicates a higher level of dispersion 

in comparison with the NB1 model, meaning that the first one could be considered more 

effective in correcting the overdispersion. 
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Models’ goodness-of-fit 

An essential step in the econometrical analysis represents the validation of models by 

comparing the calculated values with the observed ones. Examine the relationship between 

the expected and observed values, respectively (Table 6), the negative binomial models 

appear to be a substantial improvement over the Poisson model and this confirms the 

conclusion of the last paragraph that NB2 model provides the best fit to our insurance data. 

 
Table no. 6 – Observed Claim Frequency versus Predicted 

Claim 

Frequency 
Observed 

Model 

Poisson NB1 NB2 

0 131838 134147.67 134225.58 134717.33 

1 15395 14134.97 14010.41 13235.19 

2 2202 1506.78 1532.11 1678.07 

3 442 195.76 210.09 296.68 

4 100 29.74 34.63 67.17 

5 44 5 6.49 18.08 

Source: Data processed within SAS 9.3 

 

To conclude the comparisons between the analyzed count data models, Table 7 

summarizes the results obtained for the goodness-of-fit tests. 

 
Table no. 7 – Criteria for Assessing Goodness of Fit 

Criterion 
Model 

Poisson NB1 NB2 

Log Likelihood -55144.7684 -55050.4282 -54942.9562 

AIC (smaller is better) 116020.9824 110138.8563 115619.3581 

BIC (smaller is better) 116209.4344 110327.3084 115817.7287 

Source: Data processed within SAS 9.3 

 

The obtained values of the likelihood ratio test (               and         
      ) are greater than the theoretical one (     

       ) for both NB1 and NB2 models 

in comparison with Poisson regression.The resultsunderline that NB1 and NB2 models give 

a better fit of the data as opposed to Poisson regression. The remaining comparison between 

the negative binomial models indicates that NB2 model is preferred here to NB1 as it has 

higher log-likelihood (                                    ). The validity of 

these statements can also be confirmed by the information criteria. The lowest values of AIC 

and BIC comparative-fit tests are obtained for the NB2 model which underlinesthat this one 

is chosen to the detriment of both NB1 and Poisson models.   

Eventually, to determine whether the data is better modeled using NB2, we considered 

the likelihood ratio test discussed in Section 2. The log likelihood for the full model 

is      ( )              and for the null model is      ( )             . The 

likelihood ratio value obtained is     (                      )            

and since the full model includes seven predictor variables, the statistics theoretical value is 

       
        . This yields a p-value < 0.0001, highlighting once more that the NB2 is the 

best model to adjust the basic Poisson algorithm in order to estimate our insurance data. 
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4. CONCLUSIONS 

 

An accurate insurance pricing system allows insurance companies to cover expected 

losses, expenses and make adequate the provision for contingencies. The first step in auto 

insurance pricing is the modeling of claim frequency, which represents an essential part for 

obtaining a reasonable and equitable insurance premium.  

In this paper, it was considered an analysis of the classical and mixed count data 

models employed to estimate the frequency of claims made on vehicle insurance policies, 

focusing on the factors used to explain the insured risk  After a distinct analysis of insured’s 

age variable, we obtained five categories of age depending on different years intervals in 

comparison with similar studies. This classification is used in the econometric modeling of 

insurance premiums.  

After testing the equidispersion assumptions of Poisson distribution, both statistics 

presented in this paper reach the same conclusion, meaning the existence of overdispersion 

within the studied insurance portfolio. Results of these tests showed that NB models correct 

the overdispersion, providing a better fit to the data in comparison to the Poisson model. 

Furthermore, the comparison of NB1 and NB2 models indicated that the last one is 

preferred. By using the likelihood ratio in order to test the fit of the NB2 model, the results 

suggest that this model is the most appropriate to deal with the problem of overdispersion 

and to predict the claim frequency for the analyzed auto insurance portfolio.  

While using Poisson and negative binomial models in the framework of GLMs, the 

risk factors that appeared to explain significantly the frequency of claims was the age-group 

and occupation of policyholders, the type, use and GPS device of vehicle, the bonus-malus 

coefficient and duration of the insurance policy. Based on the obtained results, we observed 

a decrease of claim frequency along with an increase of the insurance contracts duration, 

and also an increase of the frequency of claims along with the increase of bonus-malus 

coefficient. For these variables, there were obtained results which are similar with other 

actuarial studies and also consistent with the reality of the studied phenomenon.  

The results obtained for the three variables introduced as risk factors indicates that the 

insured’s occupation and GPS device appears to be significant, while the value of vehicle 

does not explain the frequency of claims. The modeling results could be considered as 

interesting sugestions for the insurance companies while implementing their pricing policy. 

Thus, the company could work with more age groups in order to evaluate the risk level of 

each insured and implicitly to calculate the insurance premium  The insured’s occupation 

represents another valid factor that could be considered by the company in order to group 

the insurance portfolio in homogenous classes. Based on the GPS variable, the company 

could implement some precautionary measures, suggesting the new insured to use a GPS 

device. All this aspects aim at obtaining reasonable premium that corresponds to the risk 

level of each insured, and therby respecting the principle of equity in insurance. 

Our empirical study could be useful to the policy-makers by allowing a better control 

on the insured risks and an accurate assessment of the insurance company liabilities leading 

to solvency and profitability.  
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